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Abstract—A transmission line is made of a symmetrical pair of
strip conductors, or a single strip and a ground plane, on opposite
faces of a sheet of dielectric material. There is computed, to a close

approximation, the relations among the dielectric constant of the
sheet, the effective dielectric constant of the sheet and the empty

space, the shape ratio, and the wave resistance, for the entire range
of possible values. These relations are summarized in a graphical
chart covering the range of practical interest.

The computation is based on conformal mapping of the dielectric

boundary on coordinates such that its effect can be most closely
evaluated by simple principles. All relations are approximated in
terms of ordinary functions (exponential and hyperbolic). Of par-
ticular interest is the effective filling fraction of the dielectric ma-
terial, which depends mainly on the shape ratio and only slightly on
the dielectric constant. Explicit formulas are given for analysis or

synthesis.

I. INTRODUCTION

I

N THE DECADE of 1945 to 1955, there was much

interest in the subject of electromagnetic-wave

transmission lines formed of strips of sheet con-

ductor in various configurations. This culminated in a

special issue of the IRE TRANSACTIONS ON MICROWAVE

THEORY AND TECHNIQUES in March 1955.

In a previous paper by the author [1], it was pointed

out that one simple configuration had been resistant to

solution in useful form. This is the symmetrical case of

parallel flat strips, face-to-face, or the corresponding

asymmetrical case of one flat strip parallel to a ground

plane. That paper has presented a solution of this case,

in useful form, for strip width comparable with the

separation, or greater. That solution is limited to a

wave medium of uniform properties, such as free space.

There remains the need for a useful solution for such

parallel strips, separated by a sheet of dielectric ma-

terial serving to support the strips (or one strip relative

to a ground plane). This problem of mixed dielectric

(air and sheet) has received little attention in the litera-

ture, probably because it is difficult to solve by the

usual methods. The writer has developed an approach

to this problem, which is found to yield close approxi-

mations in terms of simple mathematical functions

(slide-rule functions, no more advanced than exponen-

tial and hyperbolic).

It is the purpose of this paper to present a solution

to this problem, leading to graphical charts covering a

wide range of shape ratio of the strips and of dielectric
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constant of the sheet material. The solution employs

conformal mapping, based largely on the preceding arti-

cle [1 ]. It serves as an introduction to a particular con-

cept for the solution of any problem of mixed dielectric,

using the present problem as an example.

It is required to express a relation between the trans-

mission-line properties, such as wave resistance and the

shape ratio (strip-width/separation), this relation de-

pending on the dielectric constant of the sheet material.

The solution will be developed separately for two ranges

of shape ratio, characterized by strips ‘(wide)’ or “nar-

row” relative to their separation.

The present approach is based on several steps involv-

ing conformal mapping. First, assuming the strips to be

surrounded by only one kind of dielectric (free space),

the actual field configuration is mapped on a rectangular

area of uniform field. Secondly, the straight boundary

of the dielectric sheet is mapped as a curve on this

rectangle, so the presence of this dielectric distorts the

field. Thirdly, some rules are perceived for approximat-

ing the effective filling fraction of the dielectric material,

from which the effective dielectric constant can be

simply computed.

This solution in its complete form does not yield an

explicit formula for either synthesis or analysis, but is

well adapted for computing a graphical chart for inter-

polation. However, it is found possible to devise explicit

formulas for synthesis or analysis, based on the ex-

tremes of ‘(wide” and “narrow” strips, which are useful

approximations.

The conformal mapping will be introduced with ref-

erence to the two planes here involved, the plane of

space coordinates and the plane of flux-potential co-

ordinates (based on free space). Then there will be pre-

sented the concepts of approximation for mixed dielec-

tric. The solution of the problem will be developed

separately for “wide” strips and for ‘(narrow” strips.

The former will be based on the preceding monograph

[1]. The latter will rely on some unpublished studies by

the author. After some general discussion of significant

relations, some procedures for computation, will be

given followed by graphical charts in a form convenient

for practical applications.

The derivation is based essentially on the separate

evaluation of inductance and capacitance along the line.

This is valid if substantially all of the energy is in the

TEM mode of propagation, the operating frequency

being far below cutoff in all higher modes. This condi-
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tion is met if the transverse dimensicms are much less

than ~ wavelength in the dielectric material.

II. CONFORMAL lJIAPPING OF DIELECTRIC BOUNDARY

Figure 1 shows the cross section of two parallel strips

on opposite faces of a dielectric sheet. The essential di-

mensions are the strip width 2a, the separation equal to

the thickness of the dielectric sheet 2b, and the dielectric

constant of the sheet k. The strips form a balanced

transmission line having certain values of wave resist-

ance R and effective dielectric constant k’. The strips

are assumed to be made of thin sheets of perfect con-

ductor. The dielectric material is assumed to be homoge-

neous, isotropic and free of dissipation, so it is com-

pletely described by one constant k.

The same parallel strips, but without the dielectric

sheet, can be formulated more simpl:y, since the space is

filled with only one kind of dielectric. For the case of

“wide” strips, this is the subject of the writer’s preced -

ing monograph [1], which provides much background

for the present treatment; equations therein are refer-

enced by their number with this prefix (A- . . . ).

One quadrant of the cross section clf the line can be

represented on one quadrant of space coordinates (the

plane of x+jy =z). This is shown in Fig. 2, which is

similar to the corresponding Fig. 2 in [I]. Here we

add the intervening sheet of dielectric k. Attention

is directed to the free-space flux line between points @

and @. This is the line which would terminate on the

edge of the strip if the dielectric sheet were not present.

The dielectric outside of this line, in the shaded area,

causes a distortion of the flux lines, which complicates

the effect of the dielectric sheet. The principal objective

in this article is the evaluation of this effect.

By the procedure described in [1], the conductor

boundaries are mapped on the z’ plane of flux and

potential coordinates, as shown in Fig. 3(a). The same

symbols are retained. Furthermore, the boundary of the

dielectric sheet is mapped on this plane as a curve be-

tween points @ and @. This operation reduces the prob-

lem to one of mixed dielectric in the space between

parallel-plane conductors of unlimited extent. The area

mapped in Fig. 3(a) is one quadrant of the cross section

as shown in Fig. 2. The related diagram in Fig. 3(b) will

be explained further on.

In Fig. 3(a), the area inside of the curve represents

the region outside of the dielectric sheet, bounded by

points @,@, O,and@. The area outsicleof the curve repre-

sents the region occupied by the dielectric sheet,

bounded by points 0, @, 0, and 0. It is required to evalu-

ate the effective dielectric constant of the entire region,

which will be a weighted mean between the dielectric

constant of the material and unity for free space.

It is noted that the conformal mapping of a boundary

between two dielectrics is valid because it retains the

angles of “refraction” of the electric field at the bound-

ary.
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III. PRINCIPLES OF APPROXIMATION

FOR MIXED DIELECTRICS

Two parameters are required to determine any ex-

ample in the present study; these may be taken as the

shape ratio a/b and the sheet dielectric constant k. In

terms of these parameters, all examples may be charted

on a square region as in the diagram of Fig. 4. Every

point in this region has a value of effective dielectric

constant k’ between the limits indicated. For the center

of this diagram, it is found that k’ = 1.70, which is

between the limits 1.5 and 2.

On this square diagram, definite coordinate scales

could be assigned and then contours of k’ could be

plotted. In Fig. 4, the scales are so chosen that the con-

tour through the center is nearly a straight line. Since

the top and bottom contours are horizontal straight

lines, it is conjectured that all the intermediate con-

tours would be nearly straight lines of intermediate

slopes.

The principal purpose of Fig. 4 is to indicate the lim-

its of the principal parameters and the ranges of particu-

lar interest. To this end, the shape ratio is designated as

follows for various ranges, in terms of strip width rela-

tive to separation.

Very narrow: a/b <<1

Narrow: a/b < 1

Square: a/b = 1

Wide: a/b > 1

Very wide: a/b >>1

Then there are simple rules for the extreme values of

effective dielectric constant k’ corresponding to the ex-

tremes of shape.

Very wide: k’=k

Very narrow: kl=k~=k+l —; k=2k’–l
2

The former is based on the principle that nearly all of

the flux is in the dielectric. The latter is based on the

principle that the electric field is symmetrically con-

centrated near the strip, with free space on one side and

dielectric on the other side.

Another parameter is introduced, for describing the

partial filling of dielectric. This is the effective filling

fraction q which is to be evaluated in this presentation.

This fraction is mainly dependent on the shape. For any

particular shape, its value lies between an upper bound

q’ and a lower bound q”, respective y, corresponding to

the extremes of lo-k and hi-k. These bounds are so

close that one suffices for fairly close approximation,

preferably the latter q” because the resulting effect of

the dielectric is greater for hi-k.

Referring still to Fig. 4, the present problem may be

regarded as one of determining the extreme conditions

on the square diagram, and then interpolating for inter-

mediate conditions, in order to evaluate the effective

dielectric constant for all conditions. This is to be ac-

complished for formulating the bounds q’, q” of the

effective filling fraction q and then interpolating for

intermediate values of dielectric constant k.

There are only two cases of mixed dielectric that can

be directly evaluated by conformal mapping. In one

case, the dielectric boundaries are all located on flux

lines; in the other case, on potential contours. On the

coordinates of flux and potential, as in Fig. 3(a), every

such boundary would be parallel to one axis or the other.

The curve representing the actual boundary meets

neither of these conditions, but it can be interpreted as

a mixture of both conditions. To develop this idea, the

same region is expanded in Fig. 5(a), showing the curve

representing the dielectric boundary.

First we note that a certain rectangle of space

a’ <x’ <g’ is filled with dielectric. It happens that this

is always more than half of the space as mapped on the

z’ plane. Then we note that the remaining rectangle

O <x’< a’ is mostly empty of dielectric, the exception

being the shaded area in Fig. 3(a) or 5 (a). It is this extra

area of dielectric which defies exact analysis but will be

found susceptible of close approximation in its effect.

The shaded area, just outside of the curved boundary

in Fig. 5(a) can be divided into two parts, as shown in

Fig. 5 (b). The entire area is expressed as ins’, in which s’

is its effective width on the x’ axis. One part of the area

is expressed as rs”, which effectively adds s” to the

width of the dielectric region on the right; this is termed

the “parallel” component. The remainder of the area is

T(S’ — s”), which is effectively in ‘{series” with the free-

space region outside of the dielectric. This analysis gives

a close approximation of the effect of the shaded area of

dielectric, which is a small part of the total effect of the

dielectric.

From the viewpoint of Fig. 5, the effective width s of

the shaded area is between two bounds s’, s“. A simple

rule for interpolation is to be formulated here. In Fig.

5(b), the effect of the areas can be formulated in terms

of dielectric and air capacitors in series and parallel

connections. As a first approximation for small shaded

area, the resultant effective width is found to be

s’ — s“ k– l,,s = s!! +7—=+s’+—
ks

(1)

In words, the parallel component of shaded area is fully

effective while the series component is I/k as effective.

While this rule is based on simplifying assumptions, it is

probably valid as a close approximation for the curved

boundary.

In Figs. 3(a) and 5(a), the filling fraction is defined as

the ratio of dielectric area over total area in the rect-

angle of field mapping. It is most easily formulated in
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Fig. 6. Comparison with strip between parallel planes.

terms of effective width. The actual filling fraction is

This includes all of the area outside of the curve, which

is the area filled with dielectric. The “parallel” part of

the filling fraction is only slightly less.

,,_g’–a’+.s”

Y– ()=1–~=~=1–~1–~’

g’ g’ g’ a’

Sf — s“
.q[– — (3)

g’

The effective filling fraction is found by (l).

g’–a’+s
q= =l–~=q’’+~:;~

g’ g’

r
— s“‘q”+~
kg’

(4)

The required components (s’, s” or q’, g”) remain to

be evaluated by various methods to be described further

on.

The relation between the effective filling fraction g

and the effective dielectric constant k‘ can be stated

from the concept of parallel capacitors.

kl–1

‘=k–l

k’=(l–q) +qk=l+q(k–1)

(5)

(=k–(k+l)~ l–C–sL–x-
)

(6)
g’ a’ ka’

The last form is in terms of the free-space flux ratio

a’/g’ from [1].

Referring to Figs. 3(a) and 5 (a), there are simple con-

cepts that are valid for the extremes of die] ectric con-

stant k. In the ‘(lo-k” extreme, the dielectric does not

cause appreciable distortion of the field. Therefore the

dielectric area is entirely effective, but its effect is small,

being proportional to k – 1. In the “hi-k” extreme,

there is no appreciable energy outside of the dielectric

area. Therefore only the “parallel” part of the area is

effective. The entire area is defined by conformal mapp-

ing of the dielectric boundary, and can be computed

to some degree of approximation. The parallel part can

be defined and computed by another case of conformal

mapping to be described here.

Figure 6(a) shows the difference between the dielec-

tric-sheet boundary and the free-space flux line from the

edge of the strip. Figure 6(b) shows another config ura-

tion in which the boundary and the flux line coincide

[3]. This is accomplished by adding above the strip an

image of the neutral plane below the strip. In the result-

ing configuration of a strip between parallel planes, the

effect of the dielectric sheet can be evaluated simply
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and exactly. In the limiting case of hi-k, these two cases

become identical, because all of the flux is in the di-

electric. In one quadrant of Fig. 6(a), as represented in

Fig. 3(a), the effective width of the dielectric filling is

between ~g’ and g’. In the corresponding quadrant of

Fig. 6(b), as represented in Fig. 3(b), the entire effective

width is just half filled with dielectric, so the effective

width of the dielectric filling is ~g”. The latter can be

exactly described and evaluated, thereby providing an

evaluation of the former. Formulas for the latter are

given in the last section herein for reference. The lower

bound of the effective filling fraction becomes

(7)

As previously stated, the principal problem in this

derivation is the evaluation of the shaded area outside

of the curved contour in Figs. 3(a) and 5(a). This will

be computed for various cases, as a fraction of the

rectangle in which the curve is inscribed. This ‘iarea

fraction, ” s’/a’, is graphed in Fig. 7, showing its variation

with shape ratio. The curve is found to be always out-

side of an inscribed elliptic quadrant, so the area frac-

tion is less than that for an ellipse, 1 – 7r/4, as seen from

the graph of s’ in Fig. 7. (This will be discussed further

with reference to Fig. 8.) The area fraction has a maxi-

mum value near the ‘(square” shape, and decreases

toward zero for both extreme shapes. It is plotted on a

special scale of abscissas, so chosen that this graph has a

simple shape close to a sine wave. This scale and the

properties of the graph will be explained in the course of

the derivations and computations. The lower graph s“

is somewhat similar in shape, and represents the parallel

component of the area fraction s’ ‘/a’. The effective area

fraction s/a’ is a weighted mean between these two

graphs, the weighting depending on the dielectric con-

stant k as indicated.

In developing mathematical approximations for the

entire range of the parameters, it is helpful to work from

the extremes of shape to some more elaborate formulas

for intermediate shapes. Therefore this approach will be

exploited in the derivations to follow. For wide strips,

the derivation is a continuation of [1]. For narrow

strips, the required background will be given without

proof.

In the literature, the closest reference found by the

writer is the 1956 and 1958 papers by Dukes [3], [4].

He does approach the problem of mixed dielectric in the

configuration of a strip and ground plane separated by

a dielectric sheet. His principal contribution is the con-

cept of Fig. 6(b) herein, which gives the asymptotic

solution for high dielectric constant. This concept should

have led to fairly close approximations, which he ex-

pected. However, he seems to have made an error in

application of this principle, since his main formula

contains a fallacy in relations. His graphs, published in

the later paper, contain errors as great as 15 per cent of

the wave resistance. The form of his graphs is followed

here for wave resistance in Fig. 9.
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IV. DERIVATION FOR WIDE STRIPS

This derivation for wide strips is based on the preced-

ing monograph [1], which will be duplicated here only

to the extent desired for continuity. As mentioned be-

fore, equations in that paper will be identified by the

prefix A followed by the number (A- . . . ).

As in [1], the effective half-width g’ on the x’ plane

is related to the free-space wave resistance RI, the in-

ductance L and the free-space capacitance Cl.

RI = R.r/g’; g’ = TRC/Rl

L = @r/g’; g’ = Tpo1/L

c1= 6olg’/3r; g’ = Tcl/elll (8)

(The symbols are listed in a later section.) In the present

problem of mixed dielectric, a significant parameter is

the effective dielectric constant k’ of the entire space

which is partially filled with the dielectric material k.

The resulting values of wave resistance and capacitance

are

1
C = k’Cl

R = 47 R’;
(9)

Also the wave velocity is decreased in the same ratio as

the resistance.



1965 Wheeler: Properties of Strips on Dielectric Sheet 177

The marginal condition for “wide” strips (the ‘isquare”

condition, a/b =1) corresponds roughly to R =+R,/d~,
for which g’= 27r. Therefore this value of g’ may be

taken as representative of this conclition. It happens

that the “wide” approximations are useful for even nar-

rower strips, so the case of g’ = r may be taken as the

extreme condition for the ‘(wide” fornmulas.

The conformal-mapping formulas are given in [1 ], for

the relation between the space coordinates on the z

plane of Fig. 2 and the flux-potential coordinates on the

z’ plane of Fig. 3(a). Some of the formulas to be pre-

sented here are more simply expressed directly in terms

of the parameter d, which is nearly equal to the effective

width g’ and therefore may be usecl interchangeably in

all except the closest approximations. Complete compu-

tations, especially in the marginal region, may include

the small difference between these two parameters

d–g’.

The mapping approximation in [1 ]1 is simple enough

to enable explicit formulation of the curve in Figs. 3(a)

and 5(a), representing the dielectric boundary on the

flux-potential coordinates. Here SeVeral parameters d, d’,

g’ are taken as equal. From (A-52) and (A-53),

~=x+~Y=~r+dtanh~~z’ —z’ (lo)

At the dielectric boundary,

Separating the real and imaginary parts of (10), the

imaginary part determines a curve on the z’ plane,

representing the dielectric boundary.

tan ~y’(1 – tanh~ ~a!)
y=~=~+d

1 + tanz *y’ taX12 +x’
– Y’ (12)

Here it is possible to express x’ of y’ explicitly in closed

form. By routine transformations, this is reduced to the

following simple form:

sin y’
cosh x’ = d — — Cos yf

Y’

(13)

The shaded area is found to approach an upper limit

for the ‘(very wide” condition of increasing d and a’,

where the mapping approximation approaches perfec-

tion. This is based on the following integration carried

to the limit of increasing d; the integrand is based on

(13) for the entire curve.

sin y’ Cos yr
—

Y’ d
a’—a?=ln = ln~,z (14)

I–l/d –

max s’ = L s‘(a’ – J)dy’ = 2 ln~
7ro

= 0.903 (15)

In the marginal ~(wide” condition, near the ‘(square”

shape, it is found that the dielectric boundary curve (13)

comes closest to the shape of an elliptic quadrant in-

scribed in the same rectangle. This fact is utilized to

obtain a close approximation for the area fraction, as

will be developed with reference to Fig. 8. Outsicle of

the actual curve, or of an ellipse, most of the area is

near the corner of the rectangle. Therefore an ellipse is

specified which crosses the actual curve near the corner.

This ellipse is one inscribed in a rectangle whit’h is

smaller than the entire rectangle, having a lesser dimen-

sion along the x’ axis. This dimension is chosen so that

the ellipse crosses the actual curve at the point on the

diagonal of the ellipse, as shown. Then the area outside

of this ellipse is taken as an approximation for the area

outside of the actual curve.

On this basis, the point of intersection is located as

indicated in Fig. 8. The area outside of the curve is

taken to be that outside of the ellipse. The resulting

effective width can be expressed in terms of a’, as fol-

lows :

s’ = 0.732 [a’ – anticosh (0.358 cosh a’ + 0.953)] (16)

This formula for the effective width might not give a

close approximation for the ‘(very wide’) case, so it may

be compared with (15) for this case.

(16): max s’ = 0.732 in ~-= 0.752 (17)

(15): maxs’ = 2 In ~ = 0.903 (18)

The fact that the ellipse approximation comes so close

(~ of the correct value ) in the “very wide” limit is an

indication of its probable very close approximation in

the intermediate “wide” range for which it is intended

(including the “square” shape).

The area fraction is found to have a maximum value

near the “square” condition, which has the following

properties (see [1], Table I). If

a/b= 1: g’= d= 6.65.> a’ = 2.416 ‘(19)

A slightly wider condition gives the maximum area

fraction, which may be compared with that outside of

an inscribed elliptic quadrant.

(16): max s’/a’ = 0.201

Ellipse: (1 – T/4) = 0.215 (20)

The area fraction is seen to be always somewhat less

than that outside of an elliptic quadrant inscribed in

the entire rectangle. (This is not the same as the elliptic

quadrant used to approximate the curve, which is in-

scribed in a smaller rectangle. )

Referring to Fig. 7, formula (16) approximates the

area fraction in the intermediate range, while (15)

evaluates the limiting slope in the ‘iver-y wide” range.

The full development of this graph is still dleferrecl for

more background.
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With reference to Figs. 5 and 6, there has been intro-

duced the concept of series and parallel components of

the shaded area just outside of the dielectric-boundary

curve on the z’ plane. The parallel component has an

effective area 7rs” and effective width s” somewhat less

than the corresponding values ms’ and s’ for the entire

shaded area. The parallel component is to be formulated

from the configuration in Fig. 6(b).

As previously explained, the lower half of Fig. 6(b) is

a representation of the space occupied by the dielectric

sheet k. This set of boundaries can be evaluated ex-

actly, as described in the last section herein. Here, it

seems preferable to use the simple close approximation

for the “wide” case. The fringing field at each edge

causes the effective half-width ~g” to exceed the actual

half-width a by a small amount Aa. This excess ap-

proaches a limit very rapidly as the strip width ap-

proaches and exceeds the spacing, the limiting value for

‘(very wide” strips being

b
Aa = ~g” – a=ln4=—ln4 (21)

T

Referring to Fig. 3, the dielectric space mapped from

Fig. 2 is the same as that in Fig. 6(b). The region indi-

coted includes both faces of the strip half-width a. Here

we are concerned with the lower face, next to the di-

electric. The actual shape in Fig. 2 or Fig. 6(a) has a

certain effective half-width g’ — a’ of the lower face as

seen in Fig. 3(a). The special shape in Fig. 6(b) has a

slightly greater effective half-width ~g” of the lower face

as seen in Fig. 3(b). The excess s” of the latter over the

former is effective in the extreme of hi-k, so it is the

parallel component of the shaded area in Fig. 3(a), as

described with reference to Fig. 5.

s~~ = *gJf – (g’– a’)= (*g” – a) – (g’ – a’ – a) (22)

From (A-13), (A-14), (A-54), (A-57) [1], and still ignor-

ing small differences (such as d —g’),

a = (d — 1) — exp-a’ — a’

= g’ – a’ – 1 – exp-a’

=gJ–a’–l–l/2(d–l)

g’–a’–a =l+exa-=1+1+2(d(d –1)

s “ = in 4 – 1 – exp-a’

= 0.386 – exp-a’

= 0.386 – l/2(d – 1)

In the limit of “very wide” strips,

max s“ = in 4 – 1 = 0.386;

max s“ 0.386
— — ===0.427

max s’ 0.903

(23)

(24)

(25)

(26)

In this extreme, the parallel component is less than one-

half the total shaded area in Figs. 3 and 5.

Formula (25) may be used to compute the parallel

component s’ ‘/a’ of the area fraction in the ‘fwide”

range. It is found to have a maximum value near the

‘isquare” shape, as shown in Fig. 7.

max s“/a’ = 0.125;

max s“/a’ 0.125
— — = 0.622

max s’/a’ 0.201
(27)

In this range, the parallel component is greater than

one-half the total.

We now have formulas for the area fraction s’/a’,

resolved into its parallel and series components s’ ‘/a’

and (s’ —s’’)/a’, for the range of ‘(wide” strips. This in-

cludes the marginal range near the ‘{square” shape.

These formulas are graphed in Fig. 7, which will be ex-

plained further after the derivation for narrow strips.

This concludes the conformal-mapping operations for

wide strips, so we are ready for the application to mixed

dielectric. The objective is the evaluation of the effective

dielectric constant k‘ which is a mean between free-

space (1) and the dielectric material k.

With reference to Figs. 3 and 5, the previous discus-

sion has led to formulas for k’ as weighted average be-

tween k and 1, in terms of the filling fraction. For wide

strips, the derived values can be inserted in the general

formulas such as (4) and (6) for computing k’; all the

quantities needed in these formulas are evaluated in [1]

or herein.

An example is given to indicate a procedure for com-

putation. It is based on the ‘~~quare” shape and a certain

dielectric constant of the material. (See [1], Table 1.)

a/b = 1; a=~

g’ = d = 6.6.5

RI = 178 ohms

a’ = 2.416

a’/g’ = 0.363

(16) S’ = 0.482

(25) s “ = 0.297

. . . . . . . . . . . . . . . .

k=2

(1) ~ = (3.390 = +s’ + +s”

at — S = 2.026 = 0.305 g’

(4) q = 0.695

(6) k’ = 1.695 (between 1.5 and 2)

(9) R = 137 ohms
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This case is the center point on the square chart in Fig. 4.

Here we may compare the simple computation based

on the lower bound of the filling fraction.

(21)

(7)

(6)

This differs

0.01 of k’ or

+g” = m + in -1 = 4.528

q = q“ = 0.681

k’ = 1.681

from the complete computation by only

0.005 of R,

The present derivation enables a close approximation

of the effective dielectric constant, over the range of

‘(wide” strips, including the margina~ range near the

‘(square” shape. It is based on the conform al-mapping

approximation of the preceding paper [1], from which

the effective dielectric constant is here evaluated for the

same shape. There remain to be given some explicit

formulas for synthesis.

A formula for synthesis must be directed toward one
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exact terms for second approximation for both extremes

of dielectric constant. The resulting approximate f’or-

mula for synthesis is given in a form convenient for

computation.

a
=~(d, –l)– Lln(2d~ -1)

T7r n-

+ ~ [ln (O!L - 1)+ 0.293- 0..5l7/k] (30)

If d,> 27r, estimated relative error <0.01 of R.

In the limit of “very wide” strips, this formula is ex act

in the first two terms for the 10-k and hi-k extremes.

It is an interpolation formula for intermediate condi-

tions.

To obtain an explicit formula for analysis, (A-71)

may be modified for mixed dielectric. The result is

a second approximation for wide strips.

dyk.

:+0’41+2iT’n(:+O’’)+1’’11++ ‘0082)

(31)

of the properties which involve the dielectric, such as ca-

pacitance (C K k’), wave resistance (R (X 1//k’) or wave

velocitY ( K 1 <k’). The inductance L is independent of

the dielectric. The wave resistance is selected as the most

useful objective for synthesis; the shape ratio is to be

computed after specifying the dielectric material k.

Therefore an approximate formula has been derived,

which gives the shape ratio in terms of the wave re-

sistance R and the dielectric constant k of the sheet ma-

terial. From (8) and (9), the wave resistance is

We continue to ignore the small difference between g’

and d. Here we define another parameter dk which is the

lesser value of effective half-width that would be re-

quired if the space were entirely filled with the dielectric

material k.

The formula is to be a close approximation for “wide”

strips (in this case dk > 27r).

The required shape is between the limits that would

be required for free space and for complete dielectric fill-

ing. For “wide” strips, it is much closer to the latter,

which therefore is taken as a starting point. The deriva-

tion has been based on ‘(very wide’} strips, giving the

In the denominator, the last term introduces the inter-

polation between the lower and upper bounds of the

effective filling fraction; it has most effect for intermedia-

te values of dielectric constant. It is estimated that the

relative error is less than 0.01 for all conditions of “wide”

strips.

V. DERIVATION FOR NARRO\V STRIPS

This derivation for narrow strips is based on free-

space formulas and the principles of the foregoing deri-

vation for wide strips. The free-space formulas for n~ar-

row strips are found in the literature, to the first ap-

proximation. The writer’s unpublished derivation to the

second approximation, including some properties of the

free-space field, will be stated as required, without

proof.

As an extension of the parameters already defined,

some other are introduced which are better suited for

narrow strips. These may be regarded as “separatism”

parameters h rather than “width” parameters g.

RI = RCk’/~ = 120 h’;

h’ = TRI/R, = R1/120 = ~’/g’ (32)

There are some related parameters that are defined here

for reference. The average value between unity and (he

dielectric constant k of the sheet material is

k+l
km=— (33)

2
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If the space were filled with ka, the wave resistance R

would be given by the separation parameter

h. = ~~z R/R, = ~~ R/120 (34)

This will be used as a reference in some formulas.

Referring back to Fig. 1, the free-space wave resist-

ance RI is given by the following formula to a second

approximation for narrow strips:

h’ = TRI/Rc

The first approximation, for “very narrow” strips, may

be derived by substituting for each strip a round wire

which is equivalent in the first-order far field. The sec-

ond approximation, for c(narrow” strips, may be derived

by substituting for each strip a spaced pair of round

wires which is equivalent in the second-order far field.

The later derivation, which is found to be rather simple,

has been developed by the writer and verified by several

alternative approaches.

On the same basis, the free-space formula for syn-

thesis, to the second approximation, is also simple in

explicit form.

b/a = $ exp h’ – $ exp-h’

-t (.. . ) exp-3h’ * . ~ . (36)

If b/a> 1, ?z’> 1.485 and relative error <0.005 of R.
The marginal condition for narrow strips, as for wide

strips, corresponds roughly to R = +RJ d~, for which

h’ =7r/2.

Referring to Fig. 2, the fields around “very narrow”

strips can be computed to a first approximation by re-

placing each strip by an equivalent small round wire.

Several simple relations become apparent, as will be

stated.

In Fig. 2, there is a dashed curve between points @

and @ which represents the free-space flux line terminat-

ing at the edge of the strip. This flux line approaches the

shape of a circular arc (quadrant). As for the effect of

the dielectric, we note that most of the electric energy

is close to the strip, and is divided nearly equally be-

tween both faces of the strip. Therefore the effective

dielectric constant, for “very narrow” strips, approaches

the lower limit,

k~=~~–k+l (37)
2

The excess over this value is caused by the shaded area,

whose effect increases with strip width.

Referring to Fig. 3(a), the flux fraction on the outer

faces may be based on the free-space field. It is found

to have the following value, a second approximation

for “narrow” strips.

a’ 11 a
— — — antitan —

g’ 7–2T b

12
—— ——— exp-k’ + — ~ exp-3k’ f . 0 . (38)

27r

In this series, the first two terms are exact. The de-

ficiency from ~ decreases rapidly with decreasing width

or with increasing separation and wave resistance.

While this flux fraction is of interest for narrow strips,

it will not be needed for the first approximation to be

developed here.

In Fig. 3(a), the dielectric boundary is represented by

the curve between points @ and @ .From the small-strip

or small-wire field in free space, this curve is found to be

In the entire rectangle (O <x’ <g’; O <y’ <T), the area

fraction above the curve is the filling fraction, and may

be formulated as follows:

(40)

The “parallel” component of this filling fraction is to

be evalu~ted with ref&-ence to Figs. 3, 5 ~ and 6, as was

done for wide strips. The proper~ies of a narrow strip

between two plan~s are g~ve~ in the Appendix. The

width parameter may be formulated from (56) and (57),

as follows, to a first approximation for very narrow

strips.

—2 J
11

(I _ 8

g ––
—

in ~/2 ,
ln~–ln~ l–—

a T’ g

ln~/2
=g’+~g” (41)

From this, the parallel part of the filling fraction may

be evaluated.

q“ = + g“/g’= + +
in ~/2

2h’
(42)

As before, the excess of the entire filling fraction over

the parallel component is taken to be the series com-

ponent, and may be evaluated as follows:

In 4/Tqf _ ~fl =
2h’

(’!3)
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From these formulas, by interpolation as in (4), the

effective filling fraction is

q = q“ + + (q’– q“)

1 (~++ln7r/2+~lr14/~=_
)

(44)

Then the effective dielectric constant is

k+l k–1
k’ = ~+~

(
in T/2 + ;; in 4/7r

)

( in 7r/2 + +-in 4/7r
k–1

1

=ka\l+—
k+l

(45)
ln4b/a-t-. ..J

over the range of narrow strips (b/a> 1) the second

term is greatest for hi-k, but is still less than ~ of the

total.

In the limit of very narrow strips (so a’= ~g’) these

relations may be expressed in terms of effective width

as was done for wide strips.

21n2 2 in 7r/2
s’=—

~ls. !! _
? s— —— a“ (46)

7r~ 7r’

This form will be used for computing the slope at the

‘(narrow” end of the curves in Fig. 7.

Here again, an approximate formula. for synthesis has

been derived to give the shape ratio for specified wave

resistance R and dielectric constant k. The required

separation parameter k’ is formulated in terms of the

hypothetical parameter ka for ku.

in 2 + (k – l)21n Tr/2
=ka+-

2k(k + 1) -

k–1
= ?!a + ~ (0.226+ 0.120/k) (47)

Then the shape ratio can be computed by (36). If

b/a >1, the second term is less than i% as great as the

first, and the estimated relative error k within 0.005 of

h’ or R.
As in the case of wide strips, we can obtain an im-

plicit formula for analysis, which is a second approxi-

mation for narrow strips.

lk–1
—

(
ln~+~ln~

2k+l )1 (48)
T

It is estimated that the relative error is less than 0.01

for all conditions of narrow strips.

VI. REI,.\TIONS FOR WIDE AND NARROW STRIPS

Having derived various formulas for wide strips or

narrow strips, it is interesting and instructive to note

the behavior over the entire range of the shape ratio

a/b or b/a. The end objective is to present u:seful design

information in convenient form. Figure 9 is intended to

serve this purpose; it is introduced here for reference in

the discussion within this section. Figure 9(a), (b), and

(c) give in three ranges a graphical pr@31t~ltiOn of’ the

relation between wave resistance and shape ratio, with

dielectric constant as a parameter. Figure 9(d) gives

the relation between the shape ratio and the effective

filling fraction, which will be discussed further on in this

section. [The four parts of this figure are alrranged in

clockwise order for showing (a), (b), and (c) in logical

sequence, preserving the proximity of adjoining re-

gions. ]

Figure 4 has been introduced as a map of the entire

range of parameters. Each scale is chosen to locate the

transition condition in the vicinity of the center. The

scale of ordinates is

k–1
—= I– l/k (49)

k

A scale of abscissas is chosen to locate the ‘isqufilre”

shape on the centerline.

The effective filling fraction q is a significant para me-

ter for distinguishing the various limits or bounds over

the map in Fig. 4. It has a particular designation and

definition on each of the four sides of the square, and

it determines the effective dielectric constant k‘.

On the lower border, the effective filling fraction is

equal to the actual filling fraction q’ based on Figs. 3(a)

and 5. On the upper border, the effective filling fraction

is equal to the parallel part q” based on Figs. 3 and 5.

These provide upper and lower bounds which are rai-her

close together. Each of these is susceptible of exact de-

scription and is susceptible of approximate or exact

formulation. These are related to the bounds of area

fraction graphed in Fig. 7.

Contours of effective dielectric constant k’ may be

mapped over the region shown in Fig. 4. One contour is

shown, the one through the center.

The center point is particularly interesting, as a n] id-

way interpolation between the extremes. At the center,

where k =2, it is found that k’= 1.70. The corresponding

values of k at the ends of this contour (2.4 andl 1.7) have

substantially equal displacement above and below the

horizontal centerline. Therefore, this contour can be

drawn as a straight line, which then determines a par-

ticular scale of abscissas.

In this family of contours k’, the bottom and top

contours are horizontal straight lines. Therefore, it is

likely that all the contours would be near-l y straight

lines having slopes between zero and that of the con-

tour through the center.
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for design.

The limits of the effective filling fraction are here de-

termined by evaluation and interpretation of the shaded

area in Figs. 3 and 5. This has been formulated in terms

of the area fraction graphed in Fig. 7. Referring to the

dielectric-boundary curve and to the rectangle in which

it is inscribed, the area fraction s’/a’ is the ratio of the

shaded area (outside of the curve) over the area of the

rectangle, as previously defined. This fraction has been

divided into two components, the parallel component

s“/a’ and the series component s’/a —s’’/a’. Further-

more, the interpolation formula (1) gives the effective

area fraction s/a’ which depends on the dielectric con-

stant k. These are graphed on a scale of abscissas twhich

has been chosen for reasons to be developed here.

In general terms, it has been found that the area frac-

tion s’/a’ approaches zero at both extremes of shape.

Furthermore, it is found that the area fraction is simply

related to the parameter a’, by direct and inverse



1965 Wheeler: Properties of Strips on Dielectric Sheet 183

proportionalities for the narrow and wide extremes. for q, this causes a relative error less than 0.01 of k,’

Referring to Fig. 7, the following table identifies the or 0.005 of R. This is close enough for practical purp,oses.

equations for evaluating the end slopes and the maxi- Also it happens that this case is based on the strip

mum value of each of the extreme curves. between two planes, which is the easiest tcl formulate.

Shape Gmph Area Fraction

s’ /u’ s“/a’

Very narrow strips Slope (46)
Intermediate strips

(46)
Maximum (20)

I’ery wide strips Slope

(27)

(15) (26)

It is desired to graph these area fractions on a scale

that will give the curves a simple shape. The following

variable for the scale of abscissas gives each curve a

shape similar to a sine wave:

~
t = — antitan a’/a* (50)

n-

The center point is located at the “square” shape by

choosing a* = 2.416 [1], (Table I). The peak of each

curve is then near this centerline.

The effective area fraction s/a’ is (obtained by inter-

polation in accordance with (l), depending on k. It is

graphed for several values of k giving equal steps of

I/k.

In Fig. 7, it is seen that the area fraction has a maxi-

mum value slightly less than that corresponding to an

elliptic quadrant inscribed in the sa[me rectangle. To-

ward the extremes, the boundar~: curve approaches

the rectangle so the area fraction approaches zero. The

scale of the shape ratio a/b is seen to be crowded towards

the center so that, over the usual range of shape, the

area fraction is near the maximum. Therefore the maxi-

mum values, which are noted on this right-hand side,

may be taken as a useful approximation.

The effective filling fraction q is particularly signif-

icant in that it is determined mainly by the shape ratio

and is only slightly dependent on the dielectric con-

stant. From its value, it is easy to compute the effective

dielectric constant. For reference, the effective filling

fraction is graphed in Fig. 9(d). The scale of shape ratio

is determined to give one limit q“ as a straight line. This

facilitates a comparison of the slightly different curves.

In Fig. 9(d), the principal (solid-line) graphs are

those for the extremes of k and one intermediate value.

The lowest (dashed-line) graph is a lower bound set by

the free-space flux ratio. The uppermost (dashed-line)

graph is an upper bound set by the ellipse, as seen in

Fig. 7. The problems and solutions presented herein are

best appreciated and understood by reference to this

set of graphs.

It would be convenient if the effective filling fraction

were dependent entirely on the shape ratio and inde-

pendent of the dielectric constant, so a single relation-

ship would suffice. The lowest graph of q is q!’, which is

effective in the limit of hi-k. This cc)mes near to the

ideal of a single graph independent of k. If g” is taken

As previously mentioned, this concept ha:s been pre-

sented by Dukes [3], [4] but it seems that he dici not

correctly apply it to the problem at hand.

The dashed curves in Fig. 9(d) show the brackets that

could be most simply formulated by conform al mapping

of the dielectric boundary. The interpolatilm between

these brackets is the subject of Fig. 7.

While the present derivations are limited to thin

strips, a small thickness can be compensated by a re-

duction of width. While retaining the same separation

2b, each strip is taken to have a rectangular cross section

of small thickness Ab less than the half-width a and

much less than the half-separation b. Each edge recedes

by a small amount Aa, which is the edge correcticm to

retain the same properties.

This edge correction is simply formulated for f’ree-

space (k = 1) as follows, for wide and narrow strips:

If a> b/+r> Ab:
‘a= Hn%+l) “1)

If b/&r> a> Ab:
‘a= Hn:+l) “2)

In the range of validity, Aa > ~Ab.

With the dielectric sheet k >1, the edge recession has

more effect because it decreases the area in contact

with dielectric while the thickness merely increases the

area exposed to empty sp~ce. In the extreme of hi-k, the

edge correction approaches zero. It is proposed that the

edge correction Aa in these formulas be multiplied by

I/k, as a sensible interpolation between the extre roes.

VII. PROCEDURES FOR COMPUTATION

The shape ratio determines the free-space wave re-

sistance RI and is the principal factor in determining

the effective filling fraction q. The latter and the dielec-

tric constant k determine the effective dielectric oon-

stant k’. Then RI and k’ determine the actual wave

resistance R. These principles underlie any cclmputation

in the present configuration including mixed dielectric.

For each case, a procedure is sought which will include

a sequence of explicit formulas.

The effective filling fraction q“ for hi-k is particu-

larly significant and is simply defined by (7). For

practical purposes, this parameter determines the ef-

fect of the dielectric sheet. It may be includecl in

various sequences of computation.

Closer computation for theoretical purposes requires

also the actual filling fraction q’ which is effective for

lo-k. This parameter may be computed from various

approximations given for wide or narrow strips. Then

(4) gives the effective filling fraction q for any k.

From the derivation for either wide or narrow strips,

a complete computation procedure can be gleaned for
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the closest approximation. There may not be a sequence

of explicit formulas, starting with any two of the three

essential parameters R, a/b, k, in which case there is the

alternative of starting with an intermediate parameter

such as RI. The latter may be required for wide strips,

as in [1].

The transition between the conditions of wide and

narrow strips, for the purpose of selecting the closer

formulas, is usually on the narrow side of the square

condition. As a rule, this transition may be associated

with the shape, a/b = ~. In particular, this is near the

cross-over of the approximate formulas for a strip be-

tween two planes.

There have been presented some explicit formulas for

R of a/b, or the reverse , including k as a parameter.

These are adequate for practical purposes, so they are

listed here.

Range of Shape Synthesis Analysis
—-

\Vide strips (29)(30) (31)
Narrow strips (34)(47)(36) (48)

VIII. DESIGN CHARTS

Figure 9 is a graphical presentation of the results of

this study, in a form adequate for practical purposes.

Figure 9(a), (b), and (c) gives, in three sections, the

relation between R and a/b for k in binary steps from 1

to 16. Figure 9(a) includes the range covered by the

complete formulas for narrow strips; Fig. 9(b) and (c),

the range covered by the complete formulas for wide

strips.

Figure 9(d) gives the relation between the effective

filling fraction q and the shape ratio a/b, including the

small dependence on k. From this ratio, (6) enables

simple computation of k’.
The velocity ratio for any shape is equal to l/~P. It

may be taken off the R curves, since it is equal to the

resistance ratio R/Rl for any shape.

As previously mentioned, the form of the R curves

is patterned after Dukes [4], but his curves have dis-

crepancies up to 0.15 of R. The present curves cover a

wider range of shape, on a more expanded scale.

IX. CONCLUSION

In this problem of mixed dielectric, it has been found

possible to compute the effective dielectric constant to a

remarkably close approximation. It is placed between

rather close limits that are exactly defined and approxi-

mately formulated. Then it is evaluated by interpola-

tion between these limits, using a rule that has a logical

basis in principle and seems sensible for this application.

This approach has been applied to the case of parallel-

strip conductors on the faces of a dielectric sheet. The

result is a formulation of this case over the entire range

of the shape ratio and the dielectric constant of the

sheet material. For synthesis or analysis, there are

given some simple explicit formulas capable of approxi-

mation within about one per cent of wave resistance.

X. SYMBOLS

k = dielectric constant of sheet of material sep-

arating the pair of strips.

k’= effective dielectric constant of all space

around the pair of strips.

ka = (k + 1)/2 = average of dielectric constants of

sheet and free space.

q’= entire filling fraction of dielectric material.

g”= parallel part (nearly all) of filling fraction.

q = (k’ – 1)/(k – 1) = effective filling fraction.

Rc=377 ohms = wave resistance of square area

of free space.

R = wave resistance of symmetrical pair of

strips on dielectric sheet k; or of one quad-

rant of its cross section.

RI= wave resistance of pair of strips in free space

(k=l).

C = capacitance.

L = inductance.

co= electricity (electric permittivity) of free

space.

PO= magnetivity (magnetic permeability) of

free space.

1= length of pair of strips (for C or ~).

x +~y = z = complex plane of space coordinates, the

cross section of the pair of strips.

x’ +jy ’ = z’ = complex plane of flux-potential coor-

dinates.

a = half width of strip conductor.

b = half separation of parallel strips.

a/b = shape ratio.

al = effective half width of outer face of strip.

g’= effective half width of strip, including flux

on both outer and inner faces.

g’/m = ratio of effective width over separation.

a’/g’ = fraction of total flux that terminates on

outer face of strip.

g”= effective half width of strip between

parallel planes.

Aa=g” - a =effective increment of half width

of ‘{wide” strip between parallel planes.

a* = 2.416 =a’ for “square” shape (a/b= 1).

d = parameter defined in [1], differing slightly

from g’ for “wide” strips.

d,= parameter d for same R but all space filled

with dielectric k.

k’= m2/g’ = separation parameter.

lz’/r = ~/g’ = ratio of half separation over effective

half width.

ha= parameter h’ for same R but all space filled

with average dielectric k..

S~= increment of effective half width, including

parallel and series parts.

s “ = parallel part of s’.

s = interpolated increment of effective half

width for any dielectric constant k.

t = special scale of abscissas, related to shape

ratio.
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APPENDIX

A STRIP BETWEEN PARALLEL PLANES

An essential part of this presentation is the relation

between the subject shape and a slightly different

shape, compared with reference to (a) and (b) in Figs.

3 and 6. The different shape is a thin strip midway

between two parallel planes, for comparison with a strip

spaced from one plane. The properties of this different

shape are summarized here for reference where needed

in the text.

Figure 6(a) shows the upper two quadrants of the

subject shape, including one of the two strips and the

neutral plane below. Figure 6(b) shows the same region

around one strip, but with the addition of a parallel

second plane equally spaced above the strip. The free-

space properties of the latter are to be formulated here.

The derivation for this shape is wel I known, in terms

of complete elliptic integrals. These can be closely ap-

proximated for the cases of wide or narrow strips by sim-

ple formulas in terms of slide-rule functions.

Referring to Fig. 6(b), the effective width of the

strip is greater than twice the actual width because both

sides are exposed to nearby planes. [n one quadrant,

the effective width g” is greater than twice the half-

width a by twice the increment of width Aa. The well-

known derivation, applied to the one quadrant, gives

g“/b = g“/T = ~/h” = RJR” = 2K/K’ (53)

in which

K = K(sin a); K’ = ,K(COS a) (54)

sin a = tanh a/2; cos a = sech a/2 (55)

tan $a = tanh $a = tanh >; (56)

Here, the free-space wave resistance in one quadrant

is R“. The complete elliptic integral K is defined and

tabulated in Dwight.

The ratio K/K’ can be closely approximated over

each of two ranges, corresponding to narrow and wide

strips. Applying these approximations, we obtain the

following simple formulas.

Narrow strips; a < in-; u,/b < 0.56;

K/k”’ < 1; R“ > ~R. :

7r2 7/

g“ = —–-– < 2T (57)
2 ‘—

in — }n —A_

tan $CY tanh ~a

Wide strips; cl > $7r; ~,1~, > Q,56;

2
g“ = 4 in ——— . 2(a + ln4) > 27r (58)

tan (&r – *a)

Relative error <0.003 of g“ (or 0.005 of a).

The approximation for wide strips is in a well-known

form, including Aa = in 4, as given by lJlaxwell [2]. ‘The

corresponding approximation for narrow strips has the

same mathematical basis, but is not so well known.

The transition between the two cases is not critical; it

may be made at a/b = 0.5, which is near g“ = 27r. In

terms of a strip and one plane, this is near g’ =~z-.

it’bile not essential to this presentation, there are

given here for reference the relations between wave re-

sistance and shape between two planes.

Narrow strips (as before):

“=Rci+:+iw”””l
b

—. ~ exp 2TRL/Rc — + exp — 2TRI/RC +
a

Wide strips (as before):

a 1
—.— RJR1-~ln4+...
b2 T

(59)

s (60)

(61)

(62)

Each of these formulas includes the first and second

terms of a rapidly convergent series. They are given in

explicit form for analysis and for synthesis.
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